Pegazafermin for the treatment of non-alcoholic steatohepatitis patients with F2/F3 fibrosis: A multi-center, randomized, double-blind, placebo-controlled Phase 2b trial

Rohit Loomba, MD, MHSc; Arun J Sanyal, MD; Kris V Kowdley, MD; Deepak L Bhatt, MD, MPH; Naim Alkhouri, MD; Juan P Frias, MD; Pierre Bedossa, MD, PHD; Stephen A Harrison, MD; Donald Lazas, MD; Robert Barish, MD; Millie Gottwald, PharmD; Shibao Feng, PHD; Germaine D Agollah, PHD; Cynthia L Hartsfield, PHD; Hank Mansbach, MD; Maya Margalit, MD; Manal F Abdelmalek, MD, MPH.

Rohit Loomba, MD, MHSc
Professor of Medicine | Chief, Division of Gastroenterology and Hepatology
Department of Medicine | University of California at San Diego
Email: roloomba@ucsd.edu
Pegazafermin is an FGF21 Analog Optimally Engineered to Balance Efficacy and Long Dosing Interval

- Built using glycoPEGylation technology with site-specific mutations
- Low nanomolar potency against FGF receptors 1c, 2c, 3c, similar to native FGF21
ENLIVEN – Study Design for Phase 2b Trial

PRIMARY ANALYSIS POPULATION
- F2-F3 NASH; NAS ≥4

PRIMARY ENDPOINTS
- ≥1-stage fibrosis improvement with no worsening of NASH\(^1\)
- NASH resolution with no worsening of fibrosis\(^2\)

KEY SECONDARY EFFICACY ENDPOINTS
- ≥2-point change in NAS with no worsening of fibrosis
- Non-invasive liver markers (liver fat, liver injury, fibrosis markers)

1 Improvement in liver fibrosis by ≥1 stage and no worsening of steatohepatitis defined as no increase in NAS for ballooning, inflammation, or steatosis (FDA draft guidance).

2 Resolution of steatohepatitis is defined as absent fatty liver disease or isolated or simple steatosis without steatohepatitis and a NAS score of 0-1 for inflammation, 0 for ballooning and any value for steatosis (FDA draft guidance).

*Some placebo patients were re-randomized in the extension phase to receive pegzarafermin.

NAS, NAFLD Activity Score; MRI-PDFF, Magnetic resonance imaging-estimated proton density fat fraction; QW: Every week; Q2W: Every 2 weeks
ENLIVEN Used Objective Methodology Designed to Reduce Histology Scoring Biases and Variability

ALL BIOPSIES SCORED INDEPENDENTLY AND SEPARATELY

Pathologist #1

Pathologist #2

Pathologist #3

40-50%

3 of 3 agree on score (full agreement)

Score recorded

40-50%

2 of 3 agree on score (mode)

Score recorded

<5%

Median or consensus phone call

Score recorded

<1% of scores required consensus phone call
Patient Disposition and Analysis Sets

Analysis Sets were prospectively defined.
Completer Analysis Set = FAS subjects with biopsies at both baseline and Week 24 (n=164).
MRI-PDFF Analysis Set = all subjects in FAS with baseline and at least one post-baseline MRI-PDFF assessment (n=181).

Randomized but not dosed (n=3)

Ineligible per 3-panel read
- Stage F1 (n=7)
- Stage F4 (n=14)
- Stage F2/F3 but NAS <4 (n=6)

Randomized Analysis Set
Randomized N=222

Safety Analysis Set
Dosed N=219

Full Analysis Set (FAS)
F2/F3, NAS≥4 N=192

Placebo n=61
15mg QW n=14
30mg QW n=66
44mg Q2W n=51
Baseline Characteristics Well Balanced Across Dose Groups

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Placebo (n=71)</th>
<th>15mg QW (n=21)</th>
<th>30mg QW (n=73)</th>
<th>44mg Q2W (n=57)</th>
<th>Total (n=222)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>56</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>Female</td>
<td>55%</td>
<td>43%</td>
<td>69%</td>
<td>65%</td>
<td>61%</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>38</td>
<td>38</td>
<td>35</td>
<td>36</td>
<td>37</td>
</tr>
<tr>
<td>Type 2 Diabetes</td>
<td>69%</td>
<td>86%</td>
<td>62%</td>
<td>61%</td>
<td>66%</td>
</tr>
<tr>
<td>Fibrosis Stage (% F3)</td>
<td>66%</td>
<td>43%</td>
<td>64%</td>
<td>53%</td>
<td>60%</td>
</tr>
<tr>
<td>NAFLD Activity Score</td>
<td>5.0</td>
<td>4.8</td>
<td>5.3</td>
<td>5.2</td>
<td>5.1</td>
</tr>
<tr>
<td>Liver Fat Content (MRI-PDFF)</td>
<td>16.7%</td>
<td>15.8%</td>
<td>16.7%</td>
<td>15.8%</td>
<td>16.4%</td>
</tr>
<tr>
<td>Liver Stiffness (VCTE, kPa)</td>
<td>14.1</td>
<td>11.2</td>
<td>12.5</td>
<td>13.2</td>
<td>13.0</td>
</tr>
<tr>
<td>PRO-C3 (ng/mL)</td>
<td>50</td>
<td>62</td>
<td>54</td>
<td>52</td>
<td>53</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>50</td>
<td>61</td>
<td>60</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>41</td>
<td>48</td>
<td>47</td>
<td>42</td>
<td>44</td>
</tr>
<tr>
<td>HbA1c, overall population (%)</td>
<td>6.6</td>
<td>7.0</td>
<td>6.6</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>170</td>
<td>186</td>
<td>175</td>
<td>165</td>
<td>172</td>
</tr>
</tbody>
</table>

Source: Randomized Analysis Set.
ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; NAFLD, nonalcoholic fatty liver disease; PRO-C3, N-terminal type III collagen propeptide; VCTE, Vibration-controlled transient elastography.
Pegozafermin Treatment Led to a Significant Improvement on Primary Endpoints at Week 24

Fibrosis Improvement ≥1 Stage Without Worsening of NASH

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Patients (%)</th>
<th>Relative risk</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo (N=61)</td>
<td>7</td>
<td>1</td>
<td>0.8, 10.8</td>
</tr>
<tr>
<td>Pegozafermin 15mg QW (N=14)</td>
<td>22</td>
<td>2.9</td>
<td>1.2, 10.8</td>
</tr>
<tr>
<td>Pegozafermin 30mg QW (N=66)</td>
<td>26</td>
<td>3.7</td>
<td>1.3, 12.9</td>
</tr>
<tr>
<td>Pegozafermin 44mg Q2W (N=51)</td>
<td>27</td>
<td>4.1</td>
<td></td>
</tr>
</tbody>
</table>

NASH Resolution Without Worsening of Fibrosis

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Patients (%)</th>
<th>Relative risk</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo (N=61)</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pegozafermin 15mg QW (N=14)</td>
<td>37</td>
<td>18.9</td>
<td>3.2, 113.1</td>
</tr>
<tr>
<td>Pegozafermin 30mg QW (N=66)</td>
<td>23</td>
<td>12.8</td>
<td>1.7, 97.1</td>
</tr>
<tr>
<td>Pegozafermin 44mg Q2W (N=51)</td>
<td>26</td>
<td>12.7</td>
<td>1.9, 84.5</td>
</tr>
</tbody>
</table>

Source: Full Analysis Set; multiple imputation analysis via Cochran-Mantel-Haenszel (CMH) test stratified by type 2 diabetes mellitus (T2DM) status (yes vs. no) and fibrosis stage (F2 vs. F3).
Pegozafermin Showed Consistent and Significant Benefit in Achieving Fibrosis Improvement Across Prespecified Subgroups

Pegozafermin 30mg QW
Proportion Achieving Fibrosis Improvement

- BL T2DM: Yes
- BL T2DM: No
- BL Fibrosis stage: F2
- BL Fibrosis stage: F3
- BL MRI-PDFF: <Median (16%)
- BL MRI-PDFF: ≥Median (16%)
- BL ALT: Normal
- BL ALT: >ULN
- BL NAS score: <Median (5)
- BL NAS score: ≥Median (5)

Pegozafermin 44mg Q2W
Proportion Achieving Fibrosis Improvement

- BL T2DM: Yes
- BL T2DM: No
- BL Fibrosis stage: F2
- BL Fibrosis stage: F3
- BL MRI-PDFF: <Median...
- BL MRI-PDFF: ≥Median...
- BL ALT: Normal
- BL ALT: >ULN
- BL NAS score: <Median (5)
- BL NAS score: ≥Median (5)

Source: Full Analysis Set
ALT, alanine aminotransferase; BL, baseline; MRI-PDFF, magnetic resonance imaging proton density fat fraction; NAS, Nonalcoholic fatty liver disease Activity Score; NASH, nonalcoholic steatohepatitis; Q2W, every 2 weeks; QW, once weekly; T2DM, type 2 diabetes mellitus; ULN, upper limit of normal.
Statistically Significant Results on the Combined Endpoint of Fibrosis Improvement and NASH Resolution

Both Fibrosis Improvement and NASH Resolution at Week 24

Results for the 15mg QW dose: 15%

MRI-PDFF responder defined as ≥30% reduction in liver fat content; ALT responder defined as ≥17U/L reduction.

Source: Full Analysis Set; multiple imputation analysis via Cochran-Mantel-Haenszel (CMH) test stratified by T2DM status (yes vs. no) and fibrosis stage (F2 vs. F3).

Results for the 15mg QW dose: 30%
Improvement in liver fibrosis by ≥1 stage and no worsening of steatohepatitis as defined as no increase in NAS for ballooning, inflammation, or steatosis. Post-Hoc Analysis.
Pegozafermin Demonstrated Robust Liver Fat Reduction with High Responder Rates by MRI-PDFF at Week 24

MRI-PDFF Analysis Set in subjects with >10% liver fat at baseline

Mean Relative Reduction in Liver Fat vs Baseline\(^1\) at Week 24

<table>
<thead>
<tr>
<th></th>
<th>Placebo (N=48)</th>
<th>Pegozafermin 30mg QW (N=49)</th>
<th>Pegozafermin 44mg Q2W (N=35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change from baseline (%)</td>
<td>0</td>
<td>-15</td>
<td>-50 ***</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>-15</td>
<td>-50 ***</td>
</tr>
</tbody>
</table>

Patients Achieving ≥30% and ≥50% Reduction in Hepatic Fat Fraction Versus Baseline\(^2\)

<table>
<thead>
<tr>
<th></th>
<th>Placebo (N=48)</th>
<th>Pegozafermin 30mg QW (N=44)</th>
<th>Pegozafermin 44mg Q2W (N=33)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients (%)</td>
<td>31</td>
<td>77 ***</td>
<td>85 ***</td>
</tr>
</tbody>
</table>

Results for the 15mg QW dose: -33%

\(^1\)Analysis via mixed model repeated measure (MMRM).

\(^2\)Analysis via Cochran-Mantel-Haenszel (CMH) test stratified by T2DM status (yes vs. no) and fibrosis stage (F2 vs. F3).

**p<0.001 versus placebo.
Pegozafermin Demonstrated Significant Improvements on Non-Invasive Markers (NITs) for Fibrosis

Absolute Change from Baseline at Week 24

Percent Change from Baseline at Week 24

Results for the 15mg QW dose: ELF: -0.33 (n=14); FIB-4: -.45 (n=14); PRO-C3: -5% (n=14).

Source: Full Analysis Set. NITs reported as LS means with changes from baseline (absolute or %)

***p<0.001 versus placebo.

Results

- **ELF**
 - Placebo: 0.2
 - Pegozafermin 30mg QW: -0.3***
 - Pegozafermin 44mg Q2W: -0.3***

- **FIB-4**
 - Placebo: 0.1
 - Pegozafermin 30mg QW: -0.3***
 - Pegozafermin 44mg Q2W: -0.4***

- **PRO-C3**
 - Placebo: 6%
 - Pegozafermin 30mg QW: -18***
 - Pegozafermin 44mg Q2W: -17***
Pegozafermin Demonstrated Significant Reductions in Non-Invasive Markers (NITs) of Hepatic Inflammation and Fibrosis

Results for the 15mg QW dose: cT1: -47 (n=10); VCTE: -1.42 kPa (n=14); FAST: -33% (n=14).

Source: Full Analysis Set for FibroScan and PRO-C3 assessments and MRI-PDFF analysis set for cT1, Analysis via MMRM for cT1 and PRO-C3, ANCOVA for VCTE. A patient is designated a cT1 responder with ≥80 msec reduction as compared to baseline. cT1 analysis was performed at sites where available. *p<0.05, **p<0.01 ,***p<0.001 versus placebo.
In Patients on Background GLP-1 Therapy, Greater Reductions Observed on Key Markers when PGZ is Added Versus Placebo

ELF Score
- Placebo (N=12): 0.3
- Pegozafermin Pooled (N=23): 0.4

VCTE (kPa)
- Placebo (N=11): -0.4
- Pegozafermin Pooled (N=23): -2.1

ALT (U/L)
- Placebo (N=12): -12.4
- Pegozafermin Pooled (N=25): -22.3

HbA1c
- Placebo (N=11): -0.1
- Pegozafermin Pooled (N=23): -0.4

- Acceptable tolerability with nausea as most common AE. No treatment-related discontinuations
- Pooled results include 30mg and 44mg groups as results were consistent across both groups.

Source: Full Analysis Set. ELF and ALT reported as LS mean change from baseline; VCTE and HbA1c reported as median change (absolute) from baseline; MRI-PDFF reported as median percent change from baseline. Post-hoc analysis.
Pegozafermin Was Well Tolerated Across Doses
Low incidence of treatment-related TEAEs

Drug-related TEAEs in ≥10% of patients

<table>
<thead>
<tr>
<th>Preferred Term</th>
<th>Placebo (n=69)</th>
<th>15mg QW (n=21)</th>
<th>30mg QW (n=72)</th>
<th>44mg Q2W (n=57)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>3%</td>
<td>24%</td>
<td>17%</td>
<td>9%</td>
</tr>
<tr>
<td>Nausea</td>
<td>1%</td>
<td>14%</td>
<td>21%</td>
<td>18%</td>
</tr>
<tr>
<td>Injection site erythema</td>
<td>3%</td>
<td>14%</td>
<td>14%</td>
<td>5%</td>
</tr>
<tr>
<td>Injection site rash</td>
<td>1%</td>
<td>0</td>
<td>10%</td>
<td>4%</td>
</tr>
<tr>
<td>Increased appetite</td>
<td>0</td>
<td>10%</td>
<td>13%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Most TEAEs were grade 1 or 2. No DILI or tremor reported. No clinically relevant changes observed on vitals, bone biomarkers or DXA.

Related discontinuations:
- a Diarrhea [15 mg QW]; b Diarrhea [30 mg QW]; Nausea [30 mg QW]; Diarrhea [30 mg QW]; ISR erythema [30 mg QW]; c Pancreatitis [44 mg Q2W].
Unrelated discontinuations: Angina [placebo]; Colon CA [30 mg QW]; COVID-19 [30 mg QW].

Source: Safety Analysis Set. AE table cutoff ≥10% of patients for placebo, 30mg QW and 44mg Q2W doses.
Conclusions

• Pegozaferrin significantly improved:
 – Fibrosis improvement without worsening of NASH
 – NASH resolution without worsening of fibrosis
 – Key non-invasive tests for NASH

• Treatment effects were consistent across various subgroups, including in subjects on background GLP-1 therapy

• Efficacy similar with weekly and every-two-week dosing intervals

• Pegozaferrin demonstrated a favorable safety and tolerability profile

• These data appear very promising for the planned Phase 3 program
ENLIVEN:
Study Results
Published in NEJM
in Conjunction with
EASL Presentation

Thank you!
Happy to take any questions: roloomba@ucsd.edu